THE GENERALIZED THEOREM OF STOKES*

STEWART S. CAIRNS

The generalized theorem of Stokes is an identity between an integral over an orientable r-manifold, M_r , and an integral over the boundary, B_{r-1} , of M_r , where M_r is on an n-space, R_n . Proofs† heretofore given have taken for R_n the space of a single coordinate system and have either assumed M_r to be analytic or imposed conditions not known to be fulfilled save by analytic manifolds. The present paper contains a proof for the case where R_n is an n-manifold of class one,‡ and (M_r, B_{r-1}) are made up, in a manner specified below, of continuously differentiable manifolds on R_n .

1. Statement of the theorem. An n-manifold, R_n , of class one is defined‡ by means of overlapping coordinate systems, called *allowable* systems, with regular transformations§ of class one between them. An r-cell on R_n will be called regular, if its closure can be parametrically defined by equations of the form

$$(1.1) y_i = f_i(u_1, \dots, u_r) (i = 1, \dots, n),$$

where $(y) \equiv (y_1, \dots, y_n)$ is an allowable system, the f's have continuous first partial derivatives, and the matrix $(\partial f_i/\partial u_i)$ is of rank r.

An r-manifold, M_r , on R_n will mean a point set whose closure, $\overline{M}_r = M_r + B_{r-1}$, is compact and connected and has the following properties: (1) Every point of M_r has an r-cell for one of its neighborhoods on \overline{M}_r ; (2) Any point, P, on B_{r-1} has for one of its neighborhoods on \overline{M}_r the closure of an r-cell with P on its boundary. We will call B_{r-1} the boundary of M_r . If M_r has no boundary, we refer to it as closed. Any point of \overline{M}_r will be called regular if it has a regular cell (open or closed) for one of its neighborhoods on \overline{M}_r . The manifold M_r will be called regular if (1) every point of \overline{M}_r is regular and

^{*} Presented to the Society, October 29, 1932; received by the editors October 2, 1935, and, in revised form, February 26, 1936.

[†] For examples, see Poincaré, Sur les résidus des intégrales doubles, Acta Mathematica, vol. 9 (1887), pp. 321-380; Goursat, Sur les invariants intégraux, Journal de Mathématiques, (6), vol. 4 (1908), pp. 331-367; R. Weitzenböck, Invariantentheorie, 1923, Chapter XIV, §§11, 12, 14; F. D. Murnaghan, Vector analysis and the theory of relativity, 1922, pp. 29-33.

[‡] Veblen and Whitehead, A set of axioms for differential geometry, Proceedings of the National Academy of Sciences, vol. 17 (1931), pp. 551-561; also The Foundations of Differential Geometry, Cambridge Tracts in Mathematics and Mathematical Physics, No. 29, 1932, Chapter 6.

[§] Such transformations are characterized by the existence of continuous first partial derivatives and of a non-vanishing jacobian.

(2) B_{r-1} is a set of distinct closed (r-1)-manifolds each made up of regular i-manifolds $(i=0, \dots, r-1)$ with the same sort of incidence relations as the i-cells of an (r-1)-dimensional complex.* Since any O-manifold is a point, we have here a recurrent definition of regular i-manifolds $(i=0, \dots, n)$.

The formulation and proof of Stokes' theorem will be given for a regular manifold, M_r , on R_n . The method depends on the existence of a triangulation (σ) of \overline{M}_r into regular cells. This aspect of the work is treated in two papers† by the writer. The first paper constructs the triangulation in the n-space of a single coordinate system. An extension of the construction to make it applicable on an n-manifold of class one is given in the second paper, which deals explicitly only with the case where M_r is closed.

Let $Y_{i_1 ldots i_{r-1}}$ be an alternating tensor such that the partial derivatives $\partial (Y_{i_1 ldots i_{r-1}})/\partial y_i$ are defined and continuous in a neighborhood of \overline{M}_r . Then \ddagger

$$(1.2) D_{i_1\cdots i_r} = \left(\frac{1}{r!}\right) \delta_{i_1\cdots i_r}^{\alpha_1\cdots \alpha_r} \frac{\partial Y_{\alpha_2\cdots \alpha_r}}{\partial y_{\alpha_1}}$$

is called the *Stokes tensor* of $Y_{i_1 \cdots i_{r-1}}$. Here, and throughout the paper, we apply the summation convention of tensor analysis only to Greek indices.

Taking (1.1) as the definition of a typical r-cell of (σ) and

$$(1.3) y_i = g_i(v_1, \dots, v_{r-1}) (i = 1, \dots, n)$$

as the definition of a typical (r-1)-cell of (σ) on B_{r-1} , we can formulate Stokes' theorem as the identity

(1.4)
$$\int_{M_{r}} \epsilon D_{\alpha_{1} \cdots \alpha_{r}} \frac{\partial (y_{\alpha_{1}} \cdots y_{\alpha_{r}})}{\partial (u_{1} \cdots u_{r})} du_{1} \cdots du_{r}$$

$$= \pm r \int_{B_{r-1}} \epsilon' Y_{\alpha_{1} \cdots \alpha_{r-1}} \frac{\partial (y_{\alpha_{1}} \cdots y_{\alpha_{r-1}})}{\partial (v_{1} \cdots v_{r-1})} dv_{1} \cdots dv_{r-1},$$

where (1) the integrals are to be evaluated over the separate cells of the triangulation and the results summed, and (2) the ϵ 's are, on each cell, +1 or -1 according as the orientation of the cell by the parameters (u), or (v), agrees or disagrees with arbitrarily preassigned orientations, of M_r and B_{r-1} .

^{*} O. Veblen, Analysis Situs, American Mathematical Society Colloquium Publications, vol. 5, 1931, pp. 76, 77.

[†] On the triangulation of regular loci, Annals of Mathematics, vol. 35 (1934), pp. 579-587; Triangulation of the manifold of class one, Bulletin of the American Mathematical Society, vol. 41 (1935), pp. 549-553.

[‡] For the generalized Kronecker deltas, see O. Veblen, *Invariants of Quadratic Differential Forms*, Cambridge Tracts in Mathematics and Mathematical Physics, No. 24. For the tensor character of $D_{i_1\cdots i_{r}}$, see the same reference or R. Weitzenböck, *Invariantentheorie*, Chapter XIV, §12.

The \pm in identity (1.4) depends on the relative orientations of M_r and B_{r-1} . It is necessary to note, in addition, that the integrals in the above identity are absolute integral invariants* under transformations of parameters and under transformations between allowable coordinate systems. The factor r in identity (1.4) drops out if the summations are made, on both sides, over all combinations of the α 's instead of being made as the α 's run independently from one to n.

Extensions of Stokes' theorem to various loci made up of regular manifolds immediately suggest themselves.

- 2. Reduction to a special case. We note first that it is sufficient to establish identity (1.4) for a typical r-cell, σ_r , of (σ) , for if the identity in this special case be applied to the sum of the r-cells of (σ) , the contributions from any (r-1)-cell common to the boundaries of a pair of r-cells add up to zero. Since each coordinate system (y) can be interpreted as a homeomorphism between its domain and a region of euclidean n-space, we lose no generality in assuming that σ_r is a regular r-cell in the euclidean n-space of a rectangular cartesian coordinate system (y). We can, furthermore, select (y), for any σ_r , arbitrarily from all the allowable systems whose domains contain σ_r . This last possibility, together with the restrictions involved in constructing the triangulation (σ) , permits us, in the course of our proof, to impose further conditions on σ_r [cf. §3(A) and §4(A) below].
- 3. The generalized divergence theorem. In the case r=n, the manifold M_r becomes a region of the space in which it is imbedded. Stokes' theorem, for this case, is equivalent [see §4(B) below] to the generalized divergence theorem, in which a vector field $[Y_1(y), \dots, Y_r(y)]$ plays the role of the tensor $Y_{i_1 \dots i_{r-1}}$ and the divergence

(3.1)
$$\operatorname{div} Y = \frac{\partial Y_{\alpha}}{\partial y_{\alpha}}$$

replaces the Stokes tensor. If we regard the y's as rectangular cartesian coordinates in a euclidean space (see §2 above), we can express the divergence theorem for the region σ_r in the form

(3.2)
$$\int_{\sigma_{\alpha}} (\operatorname{div} Y) dV = \int_{\beta_{\alpha-1}} Y_{\alpha} \gamma^{\alpha} d\beta,$$

where β_{r-1} is the boundary of σ_r and the γ 's are the direction cosines of the outer normal to β_{r-1} at any point.

The identity (3.2) will first be established for the special case of the field

^{*} For a proof, see R. Weitzenböck, loc. cit., §11.

 $(0, \dots, 0, Y_r)$ and a region ρ_r of the following sort. Let ρ_{r-1} be the projection of ρ_r onto (y_1, \dots, y_{r-1}) -space. Then the boundary, b_{r-1} , of ρ_r is made up of three parts (b^1, b^2, b^3) as follows: b^1 and b^2 are (r-1)-dimensional surfaces definable by equations

(3.3)
$$b^{j}$$
: $y_{r} = f^{j}(y_{1}, \dots, y_{r-1})$ $[j = 1, 2; (y_{1}, \dots, y_{r-1}, 0) \text{ on}^{*} \bar{\rho}_{r-1}],$

where $f^2 > f^1$ on ρ_{r-1} and both the f's have continuous first partial derivatives on $\bar{\rho}_{r-1}$; b^3 is made up of the closed line-segments parallel to the y_r -axis which join the boundaries of b^1 and b^2 . Some or all of these segments may be of length zero.

In the case of ρ_r , the divergence theorem for the field $(0, \dots, 0, Y_r)$ reduces to

(3.4)
$$\int_{\rho_r} \frac{\partial Y_r}{\partial y_r} dV = \int_{b_{r-1}} Y_r \gamma^r d\beta$$

an identity which follows, as in the proof† for three dimensions, from the equivalence of multiple and iterated integrals.

(A) We now require (see §2 above) that, for each value $j = 1, \dots, r, \sigma_r$ can be regarded as the sum of a finite number of distinct parts, each satisfying the above description of the region ρ_r , read with y_j in place of y_r .

This condition holds, for example, if (1) σ_r is a sufficiently close approximation to the r-simplex determined by its vertices and (2) the (y)-axes are suitably oriented. [Compare the "normal regions" of Kellogg's treatment.]

In equation (3.4), we can now replace r by the general subscript j and (ρ_r, b_{r-1}) by (σ_r, β_{r-1}) . Summing the resulting identities, we obtain the identity (3.2).

- 4. The generalized theorem of Stokes. Let $\gamma^{i_1 \cdots i_r}$ denote the direction cosines; of the tangent r-plane to σ_r (§2) at any point.
- (A) We impose on σ_r the conditions (see §2) (1) that, for some orientation of the (y)-axes and for every set (i_1, \dots, i_r) ,

$$\gamma^{i_1\cdots i_r}\neq 0 \quad \text{on} \quad \bar{\sigma}_r$$

and (2) that the projection of σ_r on the r-space of $(y_{i_1}, \dots, y_{i_r})$ shall satisfy

^{*} The symbol for a point set, modified by a bar, denotes the closure of the set.

[†] O. D. Kellogg, Foundations of Potential Theory, 1929, Chapter 4. The writer's methods are similar to those used by Kellogg in 3-space.

[‡] See the writer's paper, The direction cosines of a p-space in euclidean n-space, American Mathematical Monthly, vol. 39 (1932), pp. 518-523. We extend the definitions there given by the convention that the direction cosines be alternating in their indices. This paper is referred to hereafter as Dir. Cos.

the restrictions [§3(A)] imposed on σ_r in the proof of the generalized divergence theorem.

We will obtain Stokes' theorem by applying the divergence theorem to each projection and summing the resulting identities.

Let $\beta^{i_1 \cdots i_{r-1}}$ be direction cosines of the tangent (r-1)-plane to the oriented boundary, β_{r-1} , of σ_r at any point. Then, for the euclidean case mentioned in §2, Stokes' theorem is equivalent (see Dir. Cos.) to the identity

$$(4.2) \int_{\sigma_r} D_{\alpha_1 \cdots \alpha_r} \gamma^{\alpha_1 \cdots \alpha_r} d\sigma = \pm r \int_{\beta_{r-1}} Y_{\alpha_1 \cdots \alpha_{r-1}} \beta^{\alpha_1 \cdots \alpha_{r-1}} d\beta.$$

(B) The identity (4.2), read for r = n, suggests the following form for the divergence theorem, where we are using the vector field of §3, and where the β 's are direction cosines of the tangent (r-1)-plane to β_{r-1} :

$$(4.3) \qquad \int_{\sigma_{\sigma}} \left(\sum_{i=1}^{r} (-1)^{i} \frac{\partial Y_{i}}{\partial y_{i}} \right) dV = \pm \int_{\beta_{\sigma-1}} \left(\sum_{i=1}^{r} Y_{i} \beta^{1 \cdots i-1, i+1 \cdots r} \right) d\beta.$$

To make the work of §3 apply to identity (4.3), we need only show that

$$(4.4) \gamma^i = \pm (-1)^i \beta^{1 \cdots i-1, i+1 \cdots r} (i = 1, \cdots, r),$$

where the \pm depends on the orientation of β_{r-1} . Since the numerical equality of γ^i and $\beta^1 \cdots i^{-1, i+1} \cdots r$ follows easily from geometric considerations (see Dir. Cos.), we have only to show that the signs in (4.4) are correct. Using any point P on β_{r-1} as origin, let (u_1, \dots, u_r) be a coordinate system where (1) the u_1 -axis is the outer normal to β_{r-1} and (2) the (u_2, \dots, u_r) -axes are on the tangent (r-1)-plane, L_{r-1} , to β_{r-1} and orient L_{r-1} positively. Then the agreement or disagreement in orientation between the (u)-system and the (y)-system depends on the orientation of β_{r-1} . Let

$$(4.5) y_i = a_{i\alpha}u_{\alpha} (\alpha = 1, \cdots, r)$$

be the transformation between the y's and the u's. If A_{i1} denote the minor of a_{i1} in the determinant $|a_{ij}|$, then, since the u_1 -axis is perpendicular to all the other u-axes, a value k exists such that

$$(4.6) a_{i1} = (-1)^i k A_{i1},$$

where the sign of k depends on the orientation of β_{r-1} . Since the direction cosines $(\gamma^i, \beta^1 \cdots i^{-1}, i+1 \cdots r)$ have the signs of (a_{i1}, A_{i1}) respectively (see Dir. Cos.), the signs in equations (4.4) are correct and our demonstration is complete.

Now let (j_1, \dots, j_r) be a fixed set of r distinct numbers from the set $(1, \dots, n)$, and let (m_1, \dots, m_{n-r}) be the complement of (j_1, \dots, j_r) with

respect to $(1, \dots, n)$, where the m's are arranged in order of increasing magnitude. Let

$$(4.7) y_{m_n} = f_{m_n}(y_{i_1}, \cdots, y_{i_r}) (p = 1, \cdots, n - r)$$

be defining equations of σ_r , where $(y_{i_1}, \dots, y_{i_r})$ is on the projection, σ'_r , of σ_r on the $\gamma^{i_1 \dots i_r}$ -plane. Applying identity (4.3) in $(y_{i_1}, \dots, y_{i_r})$ -space to the vector field*

$$(4.8) Z_{j_k}(y_{j_1}, \dots, y_{j_r}) \equiv Y_{j_1 \dots j_{k-1} j_{k+1} \dots j_r} [y_{j_1}, \dots, y_{j_r}, f_{m_1}(y_{j_1}, \dots, y_{j_r}), \\ \dots, f_{m_n-r}(y_{j_1}, \dots, y_{j_r})]$$

we find

(4.9)
$$\int_{\sigma'_{r}} \sum_{k=1}^{r} (-1)^{k} \frac{\partial Z_{i_{k}}}{\partial y_{i_{k}}} d\sigma' = \pm \int_{\beta'_{r-1}} \sum_{k=1}^{r} Z_{i_{k}} \bar{\beta}^{i_{1} \cdots i_{k-1} i_{k+1} \cdots i_{r}} d\beta',$$

where β'_{r-1} is the boundary of σ'_r and hence the projection of β_{r-1} , and where the $\bar{\beta}$'s are direction cosines of the tangent (r-1)-plane to β'_{r-1} , the orientation being determined by that of β_{r-1} . This identity is now to be interpreted in terms of the Y's, γ 's, β 's and integrals over σ_r and β_{r-1} .

By equation (4.8)

$$(4.10) \quad \frac{\partial Z_{j_k}}{\partial y_{j_k}} \stackrel{!}{=} \frac{\partial Y_{j_1 \cdots j_{k-1} j_{k+1} \cdots j_r}}{\partial y_{j_k}} + \sum_{p=1}^{n-r} \left(\frac{\partial Y_{j_1 \cdots j_{k-1} j_{k+1} \cdots j_r}}{\partial y_{m_p}} \right) \left(\frac{\partial f_{m_p}}{\partial y_{j_k}} \right)$$

$$(k = 1, \dots, r).$$

Hence

$$(4.11) \quad \sum_{k=1}^{r} (-1)^{k} \frac{\partial Z_{i_{k}}}{\partial y_{i_{k}}} = D_{i_{1} \cdots i_{r}} + \sum_{k=1}^{r} \sum_{p=1}^{n-r} (-1)^{k} \left(\frac{\partial Y_{i_{1} \cdots i_{k-1} i_{k+1} \cdots i_{r}}}{\partial y_{m_{n}}} \right) \left(\frac{\partial f_{m_{p}}}{\partial y_{i_{k}}} \right).$$

From equations (4.7) we obtain the following matrix, with rows permuted, for the positively oriented tangent r-plane to σ_r

$$(\operatorname{sgn} \gamma^{j_1 \cdots j_r}) \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ \frac{\partial f_{m_1}}{\partial y_{j_1}} & \cdots & \frac{\partial f_{m_1}}{\partial y_{j_r}} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_{m_{n-r}}}{\partial y_{j_1}} & \cdots & \frac{\partial f_{m_{n-r}}}{\partial y_{j_r}} \end{vmatrix} \operatorname{rows} (m_1, \cdots, m_{n-r})$$

^{*} The arguments are permuted, for convenience, on the right side of equation (4.8).

Hence (see Dir. Cos.), if $d_i^1 d_i$ denote the determinant of rows (i_1, \dots, i_r) in this matrix and $\Delta = (\sum_{i_1 < \dots < i_r} d_{i_1}^2 \dots d_{i_r})^{1/2}$, then

$$\begin{cases}
\gamma^{j_1\cdots j_r} = (\operatorname{sgn} \gamma^{j_1\cdots j_r}) \frac{1}{\Delta} \\
\gamma^{j_1\cdots j_{k-1}m_p j_{k+1}\cdots j_r} = (\operatorname{sgn} \gamma^{j_1\cdots j_r}) \left(\frac{\partial f_{m_p}}{\partial y_{j_k}}\right) \left(\frac{1}{\Delta}\right) = \left(\frac{\partial f_{m_p}}{\partial y_{j_k}}\right) \gamma^{j_1\cdots j_r}.
\end{cases}$$

Therefore, substituting in equations (4.11),

(4.13)
$$\sum_{k=1}^{r} (-1)^{k} \frac{\partial Z_{i_{k}}}{\partial y_{i_{k}}} = D_{i_{1} \cdots i_{r}} + \sum_{k=1}^{r} \sum_{p=1}^{n-r} (-1)^{k} \left(\frac{\partial Y_{i_{1} \cdots i_{k-1} j_{k+1} \cdots i_{r}}}{\partial y_{m_{n}}} \right) \left(\frac{\gamma^{j_{1} \cdots j_{k-1} m_{p} j_{k+1} \cdots j_{r}}}{\gamma^{j_{1} \cdots j_{r}}} \right).$$

By the definitions of direction cosines,

$$\begin{cases}
d\sigma' = \pm \gamma^{j_1 \cdots j_r} d\sigma, \\
\bar{\beta}^{j_1 \cdots j_{k-1} j_{k+1} \cdots j_r} d\beta' = \beta^{j_1 \cdots j_{k-1} j_{k+1} \cdots j_r} d\beta.
\end{cases}$$

Substituting from equations (4.13) and (4.14) into (4.9), we obtain

$$\int_{\sigma_{r}} D_{j_{1}\cdots j_{r}} \gamma^{j_{1}\cdots j_{r}} d\sigma
+ \int_{\sigma_{r}} \sum_{k=1}^{r} \sum_{p=1}^{n-r} (-1)^{k} \left(\frac{\partial Y_{j_{1}\cdots j_{k-1}j_{k+1}\cdots j_{r}}}{\partial y_{m_{p}}} \right) \gamma^{j_{1}\cdots j_{k-1}m_{p}j_{k+1}\cdots j_{r}} d\sigma
= \pm \int_{\beta_{r-1}} \sum_{k=1}^{r} Y_{j_{1}\cdots j_{k-1}j_{k+1}\cdots j_{r}} \beta^{j_{1}\cdots j_{k-1}j_{k+1}\cdots j_{r}} d\beta,$$

where the \pm is determined by the relative orientations of σ_r and β_{r-1} and is therefore the same for all sets (j_1, \dots, j_r) . When we sum all the ${}_{n}P_{r}$ such identities as (4.15), the integrand of the second integral on the left becomes

$$(4.16) \qquad \sum_{j_1,\dots,j_r} \sum_{k=1}^r \sum_{p=1}^{n-r} (-1)^k \left(\frac{\partial Y_{j_1,\dots,j_{k-1},j_{k+1},\dots,j_r}}{\partial y_{m_n}} \right) \gamma^{j_1,\dots,j_{k-1},m_p,j_{k+1},\dots,j_r}.$$

Now let (s_1, \dots, s_r) be a fixed subset of $(1, \dots, n)$. In the summation (4.16), the superscripts of γ become (s_1, \dots, s_r) whenever

(4.17)
$$\begin{cases} (a) & j_i = s_i \quad (i \neq k), \\ (b) & j_k \notin (s_1, \dots, s_r), \\ (c) & m_p = s_k. \end{cases}$$

For each value of k, there are (n-r) sets (j_1, \dots, j_r) satisfying (4.17a) and (4.17b). Corresponding to each such set of j's and value of k, there is just one value of p satisfying (4.17c). Hence the triple summation (4.16) reduces to

$$(4.18) \quad (n-r) \sum_{s_1 \cdots s_r} \left[\sum_{k=1}^r (-1)^k \frac{\partial Y_{s_1 \cdots s_{k-1} s_{k+1} \cdots s_r}}{\partial y_{s_k}} \right] \gamma^{s_1 \cdots s_r}$$

$$= (n-r) D_{\alpha_1 \cdots \alpha_r} \gamma^{\alpha_1 \cdots \alpha_r},$$

and the left side of identity (4.15) becomes

$$(4.19) (n-r+1) \int_{\sigma_r} D_{\alpha_1 \cdots \alpha_r} \gamma^{\alpha_1 \cdots \alpha_r} d\sigma.$$

The term $Y_{t_1 ldots t_{r-1}} \beta^{t_1 ldots t_{r-1}}$, where the t's are a fixed subset of $(1, \dots, n)$, appears in the identity (4.15) if and only if (t_1, \dots, t_{r-1}) can be obtained from (j_1, \dots, j_r) by deleting one of the j's. There are r possible positions in the set (j_1, \dots, j_r) , for the j which is to be deleted, and (n-r+1) possible values. Hence $Y_{t_1 ldots t_{r-1}} \beta^{t_1 ldots t_{r-1}}$ appears in (n-r+1)r identities such as (4.15). When we sum all the identities such as (4.15), we therefore find

$$(4.20) (n-r+1) \int_{\sigma_r} D_{\alpha_1 \cdots \alpha_r} \gamma^{\alpha_1 \cdots \alpha_r} d\sigma = \pm (n-r+1) r \int_{\beta_{r-1}} Y_{\alpha_1 \cdots \alpha_{r-1}} \beta^{\alpha_1 \cdots \alpha_{r-1}} d\beta$$

which is equivalent to identity (4.2). As remarked in §2, the establishment of this identity completes our proof of the generalized theorem of Stokes.

LEHIGH UNIVERSITY, BETHLEHEM, PA.